The k-PDTM : a coreset for robust geometric inference
نویسندگان
چکیده
Analyzing the sub-level sets of the distance to a compact sub-manifold of R d is a common method in TDA to understand its topology. The distance to measure (DTM) was introduced by Chazal, Cohen-Steiner and M{\'e}rigot in [7] to face the non-robustness of the distance to a compact set to noise and outliers. This function makes possible the inference of the topology of a compact subset of R d from a noisy cloud of n points lying nearby in the Wasserstein sense. In practice, these sub-level sets may be computed using approximations of the DTM such as the q-witnessed distance [10] or other power distance [6]. These approaches lead eventually to compute the homology of unions of n growing balls, that might become intractable whenever n is large. To simultaneously face the two problems of large number of points and noise, we introduce the k-power distance to measure (k-PDTM). This new approximation of the distance to measure may be thought of as a k-coreset based approximation of the DTM. Its sublevel sets consist in union of k-balls, k<<n, and this distance is also proved robust to noise. We assess the quality of this approximation for k possibly dramatically smaller than n, for instance k = n 1 3 is proved to be optimal for 2-dimensional shapes. We also provide an algorithm to compute this k-PDTM.
منابع مشابه
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent
Coherent uncertainty quantification is a key strength of Bayesian methods. But modern algorithms for approximate Bayesian posterior inference often sacrifice accurate posterior uncertainty estimation in the pursuit of scalability. This work shows that previous Bayesian coreset construction algorithms—which build a small, weighted subset of the data that approximates the full dataset—are no exce...
متن کاملSensitivity Sampling Over Dynamic Geometric Data Streams with Applications to k-Clustering
Sensitivity based sampling is crucial for constructing nearly-optimal coreset for k-means / median clustering. In this paper, we provide a novel data structure that enables sensitivity sampling over a dynamic data stream, where points from a high dimensional discrete Euclidean space can be either inserted or deleted. Based on this data structure, we provide a one-pass coreset construction for k...
متن کاملClustering High Dimensional Dynamic Data Streams
We present data streaming algorithms for the kmedian problem in high-dimensional dynamic geometric data streams, i.e. streams allowing both insertions and deletions of points from a discrete Euclidean space {1, 2, . . .∆}. Our algorithms use k −2poly(d log ∆) space/time and maintain with high probability a small weighted set of points (a coreset) such that for every set of k centers the cost of...
متن کاملCoresets for Scalable Bayesian Logistic Regression
The use of Bayesian methods in large-scale data settings is attractive because of the rich hierarchical models, uncertainty quantification, and prior specification they provide. Standard Bayesian inference algorithms are computationally expensive, however, making their direct application to large datasets difficult or infeasible. Recent work on scaling Bayesian inference has focused on modifyin...
متن کامل49 CORESETS and SKETCHES
Geometric data summarization has become an essential tool in both geometric approximation algorithms and where geometry intersects with big data problems. In linear or near-linear time large data sets can be compressed into a summary, and then more intricate algorithms can be run on the summaries whose results approximate those of the full data set. Coresets and sketches are the two most import...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.10346 شماره
صفحات -
تاریخ انتشار 2018